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Abstract

Dynamic stochastic games notoriously suffer from a curse of dimensionality that makes

computing the Markov Perfect Equilibrium of large games infeasible. This article com-

pares the existing approximation methods and alternative equilibrium concepts that have

been proposed in the literature to overcome this problem. No method clearly dominates

the others but some are dominated in all dimensions. In general, alternative equilib-

rium concepts outperform sampling-based approximation methods. I propose a new game

structure, games with random order, in which players move sequentially but the order of

play is unknown. The equilibrium policy functions of this game consistently outperform

all existing approximation methods in terms of approximation accuracy while still being

extremely efficient in terms of computational time.
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1 Introduction

Since Ericson & Pakes (1995) introduced their dynamic quality ladder model, dynamic stochas-

tic games have entered the standard toolkit of both theoretical and applied Industrial Organi-

zation economists. However, one of the main problems with the computation and estimation of

dynamic stochastic games involves their curse of dimensionality. In particular, as the number

of players in the model increases, the computational burden increases exponentially, making an

exact numerical solution unfeasible but for small state spaces that are generally not rich enough

to capture many economic environments. This has motivated many scholars to find methods

to alleviate this constraint. All of these methods involve a trade-off between approximation

accuracy and computational time. From a practitioner’s perspective, however, it is hard to

understand from the current literature which method is preferable, in any given setting.

In this article, I review the most relevant approximation methods that have been developed

to solve the curse of dimensionality in the equilibrium computation of dynamic stochastic games.

I show that methods that rely on a different equilibrium concept generally outperform sampling-

based methods both in terms of approximation accuracy and computational speed, with the

caveat that they are more flexible in terms of fine-tuning. Moreover, I propose a new method

that I call games with random order. My method relies on a different equilibrium concept

according to which firms move sequentially but the order of play is unknown. The equilibrium

policy functions of this alternative equilibrium concept outperform all existing methods in terms

of approximation accuracy, while being very efficient in terms of computational time.

I start by presenting the original framework from Ericson & Pakes (1995) in Section 2.

In Section 3, I provide an overview of the existing approximation methods, highlighting their

strengths and weaknesses. In Section 4, I present simulation results for the different approxi-

mation methods, using the framework of Ericson & Pakes (1995) as a benchmark. Section 5

concludes.

2 Quality Ladder Model

In this section, I review the quality ladder model of Ericson & Pakes (1995) and the related

computational algorithm of Pakes & McGuire (1994). I decide to use this particular model as

baseline for two main reasons. First of all, Ericson & Pakes (1995) is generally recognized as the

model that introduced computational methods to study imperfect competition in market dy-

namics. It is indeed one of the most influential papers in industrial organization and economics

in general. It has provided the baseline for both theoretical and empirical work on industry

dynamics. Some of the most influential computational theory papers include Gowrisankaran

(1999), Miao (2005), Asplund & Nocke (2006) and Besanko et al. (2010). On the other hand,

thanks to identification results from, among many others, Hotz & Miller (1993), Aguirregabiria

& Mira (2002) and Bajari et al. (2007), it has spurred a large empirical literature that includes

for example Goettler & Gordon (2011), Gowrisankaran & Rysman (2012), Ryan (2012) and

2



Igami (2017). Second, Ericson & Pakes (1995) is the model used to test most of the different

approximation methods described in this paper. However, even though this framework is often

used as a benchmark, to the best of my knowledge, there exists no work comparing the different

approximation methods with each other.

2.1 The Game

Time is discrete and the horizon is infinite. At each point in time, up to N firms are active

and compete in prices with differentiated products and the state of the game is represented by

a quality vector ω = {ω1, ..., ωN} ∈ Ω = {0, ...,M}N , where ωn represents the quality of firm n

and M is the maximum achievable quality level. Let ωn = 0 denote inactive firms. I will refer

to ω as a state and Ω as the state space. Firms maximize their total future discounted profits.

The discount factor is β ∈ [0, 1). The equilibrium concept is Markov Perfect Equilibrium.

The first computational bottleneck of the model arises from the dimension of the state

space: MN . This quantity defines the number of points at which the equilibrium has to be

computed. Since the game satisfies the symmetry and anonymity assumptions of Doraszelski

& Pakes (2007), we can reduce the number of relevant states from MN to M
(
M+N−2
N−1

)
, so

that it’s combinatorial in N instead of exponential. This is a sensible reduction in terms of

computational time as, for example, it makes the state space of an asymmetric game with

M = 5, N = 3 (|Ω| = 125) comparable with the one of a symmetric game with M = 6, N = 3

(|Ω| = 126).

Static Profits. Firms compete in prices facing multinomial logit demand. There is a

continuum of consumers of mass m. Consumer i’s utility from buying one unit of product n is

given by uin = g(ωn)− pn + εin where

g(ωn) =

3ωn − 4 if 1 ≤ ωn ≤ ω∗

12 + log(2− exp(16− 3ωn)) if ω∗ < ωn ≤M
(1)

where pn is the price of product n and εin is the idiosyncratic preference of consumer i for

product n. There is an outside option which gives utility ui0 = εi0. The random shocks εin are

assumed to be independent and type 1 extreme value distributed so that the resulting demand

function has the logit form

Dn(p;ω) = m
exp (g (ωn)− pn)

1 +
∑N

j=1 exp (g (ωj)− pj)
(2)

where p is the vector of prices. Each firm chooses pn in order to maximize static profits

πn(p;ω) = max
pn

Dn(p;ω)(pn − c) (3)

where c is the marginal cost of production, assumed identical across firms. Given a state

ω, there exists a unique set of Nash equilibrium prices (Caplin & Nalebuff, 1991).
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Investment and Depreciation. Firms can invest in order to improve their quality. Condi-

tional on investing an amount xn, firm n has a probability Pr(xn) = αxn
1+αxn

of increasing its

product quality from ωn to ωn + 1. Product quality cannot increase in state ωn = M . After

the investment outcome is realized, with probability δ ∈ (0, 1), an industry-wide shock hits the

industry, decreasing the quality of each active firm by one unit. Inactive firms and firms in

state ωn = 1 are not affected1.

Entry and Exit. In order to ensure equilibrium existence, I follow Doraszelski & Satterth-

waite (2010) and assume stochastic entry costs and exit scrap values. In each period, each

inactive firm (entrant) draws an entry cost φen from a distribution F e(φen). After observing its

own cost, each entrant firm simultaneously decides whether to enter the market or not. At the

same time, in each period, each active firm draws a scrap value φxn from a distribution F x(φxn)

and decides whether to stay active or exit the industry and collect the scrap value.

Timing. The overall timing of the game is the following:

1. Active firms earn static profits. Active firms observe the static scrap values and decide

whether to exit the industry or not. Entrants observe entry costs and decide whether to

enter the industry or not. Active firms decide their optimal investment level.

2. Entry and exit take place. Investment costs are paid, conditional on the firms being still

active, and investment outcomes are realized.

3. The industry shock is realized.

2.2 Value and Policy Function

Let Vn(ω) denote the value function of firm n in state ω. The value function is implicitly

defined by the Bellman equation

Vn(ω) = π∗n(ω) + βEω′

[
Vn(ω′)

∣∣∣ ω,X,Φ
]

(4)

where X = {X1, ..., Xn} is the set of investment strategies of each firm and Φ = {Φ1, ...,Φn}
is the set of entry and exit strategies of each firm. The expectation Eω′ is taken over the real-

izations of scrap values, entry costs, investment outcomes and the industry-wide shock.

The second computational bottleneck of the model arises from the fact that this expectation

consists of 4(N−1) terms since each competitor firm state can decrease with the industry shock,

stay constant, increase with successful innovation or change to ωn = 0 through exit.

The exit policy function is given by

Φ∗n(ω, φxn|ωn 6= 0) = arg max
{
φxn , max

xn
−xn +

1

1 + αx
βW 0

n(ω,ω,X,Φ)+ (5)

+
αx

1 + αx
βW 1

n(ω,ω,X,Φ)
}

(6)

1State ωn = 0 indicates an inactive firm, hence unaffected by industry shocks. State ωn = 1 is the lowest

possible quality level for active firms, where quality cannot decrease any further.
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where W k
n = Eω′

[
Vn(ω′)

∣∣∣ω,X−n,Φ−n,Pr(xn) = k
]

is the conditional value function and

k ∈ {0, 1} is the investment outcome (failure and success, respectively). Given the investment

technology, optimal investment is given by

x∗n(ω) = max

{
0 ,

1−
√
αβ(W 1

n(ω,ω,X,Φ)−W 0
n(ω,ω,X,Φ))

α

}
. (7)

The entry policy function is given by

Φ∗n(ω, φen|ωn = 0) = arg max
{
φen , β Eω′

[
Vn(ω′)

∣∣∣ ω,X,Φ
]}

. (8)

Equilibrium. The system of equations given by the value function (eq. 4) and policy

functions (eqs. 5, 7, 8) defines the Markov Perfect Equilibrium of the game.

2.3 Solution Method

The solution algorithm proposed by Pakes & McGuire (1994) is value function iteration. One

starts with an initial guess for the value and policy functions and computes the best reply

function of a firm to the old guess and updates the value function accordingly. The algorithm

stops as soon as the distance between two successive iterations of the value function falls below

an arbitrarily small positive threshold ε > 0. Throughout the paper, I use the convergence

threshold ε = 10−10, unless otherwise specified. It is important to remark that the best reply

operator is not a contraction and hence, there is no guarantee of convergence. I find, however,

that the algorithm always converges for all the parametrizations explored in the simulations.

3 Approximation Methods

In this section, I review different approximation methods to solve the curse of dimensionality in

dynamic stochastic games. Note that there is no conceptual problem in solving games with large

number of firms or states. The problem is the computational burden which can make dynamic

stochastic games too complex to solve in feasible amounts of time. I explore six approximation

methods or alternative equilibrium concepts. They are (1) value function approximation (Keane

& Wolpin, 1994), (2) experience-based equilibrium (Pakes & McGuire, 2001), (3) oblivious

equilibrium (Weintraub et al., 2008), (4) games in continuous time (Doraszelski & Judd, 2012),

(5) constrained optimization (Farias et al., 2012) and (6) games with random moves (Doraszelski

& Judd, 2019). These methods can generally be grouped into three classes: methods that rely

on a different equilibrium concept (3, 4, 6), methods that rely on learning (2), and methods

that rely on function approximation (1, 5). Generally, I find that the first and second classes

outperform the third, both in terms of speed and accuracy. Lastly, I also propose a new

equilibrium concept, games with random order, which outperforms all other methods in terms

of approximation accuracy while still being among the fastest algorithms.
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In order to provide a baseline for the different approximation methods, I also include the

following algorithm, that I call baseline approximation or myopic equilibrium. It consists in

computing the conditional value function of firm n as

W k
n (ω) =

π∗n(ω′|ω,Pr(xn) = k)

1− β
(9)

which corresponds with the discounted future profits of firm n in state ω, conditional on

investment outcome k ∈ {0, 1} and keeping all the other present and future industry dynamics

constant. This could also be interpreted as a myopic conditional value function, where firm n

takes into account only its present profits, its present decisions and the infinite horizon, ignoring

its own future actions and its competitor’s present and future actions. From this conditional

value function, I compute the value and policy functions. This algorithm is extremely fast since

it corresponds to a single iteration of the Pakes & McGuire (1994) algorithm, but without the

need of taking the expectation over the competitor’s actions. It provides a good approximation

of the value function but a poor approximation of the policy functions.

3.1 Value Function Approximation

Keane & Wolpin (1994) proposed an approximation method based on a combination of expected

value simulation and value function approximation. In this section, I implement only the value

function approximation part of their paper.

Their idea is to solve the value function only at a limited number of points in the state

space and then to interpolate it over all the remaining points. The resulting approximation

crucially depends on

1. the number of points of the state space at which the value function is solved exactly,

2. the choice of these points,

3. the accuracy of the interpolation/prediction algorithm.

The choice of the number of points at which the value function is solved exactly involves a

trade-off between speed and accuracy. In Section 4, I report results for a sample size equal to

|Ω|2/3. Different concave functions of the dimension of the state space lead to similar results.

As suggested in the original paper, I pick the states uniformly at random. For what concerns

the interpolation algorithm, I use linear regression over a set of dummy variables for own states

and a degree 3 polynomial expansion of the states of the other firms. Despite the fact that

this method allows different approximation algorithms to be applied to the value function,

I find that linear regression with a sufficiently rich support is the most efficient in terms of

computational time, while still providing great approximation accuracy.

The solution algorithm is value function iteration. However, since the value function is

approximated in most of the state space, I average updates over iterations and use an less
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stringent stopping rule: ε = 10−2. A more stringent stopping rule could lead to more precise

approximations, at the expense of computational time. However, with the aforementioned

stopping rule, the algorithm is already among the slowest.

3.2 Experience-Based Equilibrium

Fershtman & Pakes (2012) proposed a learning-based equilibrium concept based on the com-

putational framework of Pakes & McGuire (2001): the Experience-Based equilibrium. This

equilibrium concept dictates that, in equilibrium, players expected values of outcomes are con-

sistent with the actual distribution of outcomes at those states. This implies that firms’ actions

are optimal given their expectations and their expectations are in line with their experience

(hence the name). Note that this equilibrium notion only applies to states visited in equilib-

rium, while it is silent on firm behavior in states outside the recurrent class. This is indeed the

main computational advantage of the algorithm: since computations have to be performed only

for the states in the recurrent class, this can potentially significantly reduce the computational

burden if the recurrent class is small.

In practice, the equilibrium computation algorithm is based on reinforcement learning

theory from artificial intelligence. Players start with some initial expectations on the value of

their actions, W 0
n(ω, k) (i.e. the value of action k of firm n in state ω). Given an action and a

realization of the random variables, players update their beliefs on the value of that action from

realized profits and state transitions. In particular, players average their observed payoffs in

order to form their expectations. In practice, if we denote with W t
n(ω, k) the k−action specific

value function of firm n in state ω at iteration t, the updating algorithm is

W t+1
n (ω, k) =

1

I t(ω)
V t
n(ω, k) +

I t(ω)− 1

I t(ω)
W t
n(ω, k) (10)

where I t(ω) indicates the number of times state ω was previously visited and V t
n(ω, k) is

the value obtained from performing the optimal action k at iteration t in state ω for firm n:

V t
n(ω, k) = max

k
π(ω, k) +W t

n(ω, k). (11)

Repeating this process starting from the new state generates an iterative sequence of play

that ultimately leads to equilibrium beliefs and optimal policies. The authors provide a method

to obtain a distance metric to use as a stopping procedure together with an approximation

threshold. A more strict approximation threshold leads to a better approximation at the

expense of computational time. In my replications I use ε = 10−2 as a distance threshold since

it provides a good trade-off between speed and approximation accuracy.

3.3 Oblivious Equilibrium

Weintraub et al. (2008) propose an alternative solution concept for games with a large number

of firms: Oblivious equilibrium. The name reflects the fact that firms take decisions with a
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limited perception of the current state. In particular, at each point in time firms observe only

their own state and not the state of their competitors. Therefore, firms’ oblivious strategies

depend only on their own state and not on the state of the industry. This greatly alleviates

the computational burden since the state space is reduced from MN points to M points and

expectations are taken over 4 instead of 4(N−1) possible future states.

Since all firms use a common strategy, the state transitions are independent across firms.

This implies that we can compute the expected number of firms at quality level ω at time t,

E[st(ω)], as the product of the asymptotic individual probability distributions. The oblivious

value function is

Vn(ωn) = Eω

[
π∗n(ω)

∣∣∣ ωn, Xn,Φn

]
+ βEω′

n

[
Vn(ω′n)

∣∣∣ ωn, Xn,Φn

]
. (12)

From this expression we observe that only firm n’s own strategy determines its state

trajectory and ultimately its value. Competitors’ strategies enter the value function indirectly

in the profit function since other firms’ states are not observed and the expectation is taken

over their (symmetric) equilibrium strategies.

3.4 Constrained Optimization

Farias et al. (2012) combine a constrained optimization approach with an approximation method

using basis functions. Their method relies on the observation that, given the Bellman Operator

T , defined as

TVn(ω) = π∗n(ω) + βEω′

[
Vn(ω′)

∣∣∣ ω,X,Φ
]
. (13)

The value function can be expressed as the solution of the following minimization problem

(Bertsekas et al., 1995):

min
Vn

c′Vn s.t. TVn(ω) ≤ Vn(ω) ∀ω ∈ Ω (14)

where c is a component-wise positive vector with the same size of V . As the authors

suggest, if one is interested in the long-run behavior of the industry, the weight vector c should

be the asymptotic distribution of states. The way to obtain it is to perform a Montecarlo

simulation of the industry evolution at each iteration and derive a proxy of the asymptotic

distribution from it.

The minimization problem above has a number of variables and constraints equal to the

dimension of the state space. In order to decrease the computational burden, the authors sug-

gest a number of steps. First, they suggest to replace the high-dimensional value function with

an approximation based on a lower dimensional combination of basis functions. The larger the

number of basis functions, the better the approximation but the slower the algorithm. Second,

they suggest to reduce the number of constraints by sampling. As for the weight vector c,

an optimal sampling procedure should be proportional to the asymptotic distribution of the
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states. For what concerns the sample size, the same trade-off as for value function approxima-

tion applies: the larger the number of sampled states, the better the approximation but the

slower the algorithm. These two approximations together solve the curse of dimensionality in

the number of variables and in the number of constraints. There is however one last bottleneck

in the minimization problem: the Bellman Operator has to perform an expected value over a

potentially large number of points (exponential in N). The authors suggest to overcome this

problem by discretizing the support of the policy functions (e.g. the possible investment levels).

It is important to note that the optimization problem above outputs a value function

approximation that is likely to be downwards-biased because of the inequality constraints.

The authors suggest inserting a parameter θ > 0 in the constraint in order to relax them:

TVn(ω) − θ ≤ Vn(ω) , ∀ω ∈ Ω. However, they do not provide any guideline about how to

set such a parameter. I use the distance between sequential function updates as relaxation

parameter.

In the simulations, I use the same basis function used for the linear regression algorithm

in Section 3.1. I also use the same logic to pick the of constraints: their number is |Ω|2/3 and

they are drawn uniformly at random. These two approximations together greatly reduce the

computational time, but unfortunately imply a significant approximation error. Therefore, I

decided not to further discretize the action space as it’s suggested in the paper. Moreover,

I find that iterating the algorithm more than once does not bring significant improvements

in accuracy, so I limit the algorithm to two iterations: (1) solve the constrained minimization

problem starting with a uniform weight vector c and use the resulting policy function to simulate

the industry dynamics, (2) use the estimated asymptotic state distribution c to repeat the first

step.

3.5 Games in Continuous Time

Doraszelski & Judd (2012) analyse dynamic stochastic games in continuous time. The main

difference with respect to the standard discrete time formulation is that the time path of the

state is not a discrete sequence but a right-continuous function of time. Jumps occur at random

times according to Poisson processes with hazard rate λ(Xt,Φt,ωt). The probability that the

state changes at time t is given by a function of the state and actions of the players just

before time t. Since a change from a state to itself is equivalent to no change of state, one can

concentrate only on jumps from a state ω to a different state ω′ 6= ω. In our specific case, the

hazard rate for firm n is λ(Xt,Φt,ωt) = δ + αxn
1+αxn

, where the two terms correspond to a jump

downwards and upwards, respectively.

Since time is continuous, it’s important to distinguish between flow payoffs and changes in

wealth that occur when the state jumps. Firm n’s profits are given by π∗n(ωt) and are expressed

in dollars per unit of time. Scrap values φn(ωt) are instead wealth shocks and are expressed in

dollars. The objective function of firm n is the expected discounted total flow of profits plus
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discrete changes in wealth:

Vn(ω) =

∫ ∞
0

e−ρtπ∗n(ωt)dt+
∞∑
s=0

e−ρTsφn(ωTs) (15)

where ρ is the discount rate. In order to make the models comparable, I set ρ = − log(β).

The equilibrium concept is Markov Perfect Equilibrium. Therefore, even though players’

strategies could be time-dependent, the optional strategies are not, which implies that players’

actions change only when the state changes. The Bellman equation is similar to the one in

discrete time

Vn(ω) = π∗n(ω) + (1− ρ− λ(X,Φ,ω))Vn(ω) + λ(X,Φ,ω)Eω′

[
φn(ω) + Vn(ω′)

∣∣∣ ω,X,Φ
]
(16)

which can be rewritten as

Vn(ω) =
1

ρ+ λ(X,Φ,ωt)

(
π∗n(ω) + λ(X,Φ,ω)Eω′

[
φn(ω) + Vn(ω′)

∣∣∣ ω,X,Φ
])
. (17)

The solution algorithm is value function iteration, performed in parallel at all states. The

computational advantage of expressing the game in continuous time comes from the fact that

the probability that more than one coordinate of the state changes simultaneously is zero.

Moreover, events which do not change the state can be ignored. Therefore, the number of

points over which the expected value is computed is 3(N − 1) instead of 4N−1.

It is important to underline that the equilibrium of the game in continuous time does not

have to be interpreted as an approximation of the equilibrium of the game in discrete time.

However, modeling the game in continuous time offers considerable computational savings while

generating similar equilibrium behavior. One important difference concerns the fact that, in the

game in continuous time, firms have additional incentives to invest since their investment not

only increases the probability of success but also the hazard rate and hence speed of success.

3.6 Games with Random Moves

Doraszelski & Judd (2019) proposed an alternative game structure in which players move in a

random sequence. In each period, a firm is taken uniformly at random and gets the opportunity

to enter/exit and invest. Static competition takes place in every period. In order to make the

model comparable with Ericson & Pakes (1995), the authors divide per period profits by N

replacing πn(ω) with πn(ω)
N

and take the N th square root of the discount factor replacing β with
N
√
β

I denote with Vn|m(ω) the value function of firm n conditional on firm m moving. The

value of firm n when it is its turn to move is then

Vn|n(ω, φn) =
π∗n(ω)

N
+ max

{
φn ; max

xn
−xn +

N
√
β Ek,ω′

n

[
Vn,k(ω

′)
∣∣∣ω, xn]} . (18)
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The main difference with respect to Equation 4 is that the expectation is taken over the

future state of firm n alone (ω′n) and with respect to the identity of the next firm to move (k).

Hence, the number of terms is 4(N − 1) instead of 4N−1.

When it is not firm n’s turn to move, the value function is

Vn|m(ω) =
π∗n(ω)

N
+

N
√
β Ek,ω′

m

[
Vn,k(ω

′)
∣∣∣ω, Xm,Φm

]
. (19)

Since firms do not know ex-ante who will move next and the mover is selected uniformly at

random, the ex-ante value function is given by the average conditional-on-moving value function

V̄n(ω)
1

N

N∑
m=1

Vn,ms(ω). (20)

The equilibrium concept is Markov Perfect Equilibrium where the policy functions are

implicitly defined in Equations 18 and 19. The solution algorithm is value function iteration.

As for the original model, there is no guarantee of convergence since the Bellman Operator

does not have to be a contraction. However, in all simulations, the mapping converges to a

fixed point given an arbitrarily small convergence threshold.

3.7 Games with Random Order

In this section, I propose an alternative equilibrium concept in which players move sequentially

but the order of play is unknown to the firms and hence random from their point of view. Firms

do not observe each other’s actions nor the evolution of the states. They only observe the state

when it is their turn to move and they know they are moving sequentially. As in Doraszelski

& Judd (2019), in order to make the results comparable with the original model, I divide per

period profits by N replacing πn(ω) with πn(ω)
N

and take the N th square root of the discount

factor replacing β with N
√
β.

I denote with Vn|m(ω) the value function of firm n conditional of firm m moving. The

value of firm n when it is its turn to move is then

Vn|n(ω, φn) =
π∗n(ω)

N
+ max

{
φn ; max

xn
−xn +

N
√
β EK,ω′

n

[
Vn,K(ω′)

∣∣∣ω, xn]} (21)

where K is one possible order of moves. The main difference with respect to the value

function of Doraszelski & Judd (2019) in Equation 18 is that the expectation is taken with

respect to K instead of k. Therefore, the number of terms over which the expectation is taken

is 4(N − 1)! instead of 4(N − 1). However, this increase in computational burden could be

compensated by a better approximation performance and lower number of iterations (as turns

out to be the case).
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4 Computational Results

I compare the approximation methods listed in Section 3 for different numbers of firms (N).

In Appendix A.5, I compare the approximation methods across numbers of ladder steps (M).

I use the parametrization reported in Table 1, which is the original parametrization of Pakes

& McGuire (1994) with the only difference concerning scrap values and entry costs. In the

original paper, the scrap values and entry costs are deterministic. In order to ensure equilibrium

existence, I follow Doraszelski & Satterthwaite (2010) and use stochastic scrap values and entry

costs. I use uniform distributions for both random variables keeping the same expected value

as the original deterministic parameters. I report summary statistics of the different equilibria

in Appendix A.1.

Parameter Symbol Value

Investment efficacy α 5

Discount factor β 0.925

Marginal cost c 5

Industry shock probability δ 0.7

Convergence accuracy ε 10−10

Market size m 5

Entry cost distribution F (φin) [0, 0.4]

Scrap value distribution F (φout) [0, 0.2]

Demand parameter ω∗ 5

Table 1: Model Parametrization

All computations are coded in MATLAB and performed on a standard machine. I keep

the code as plain as possible in order to ensure that the results are comparable across methods.

Whenever two algorithms overlap, I use the same code to ensure maximal comparability. I

present results relative to the full solution method. In particular, to compare the different

value function approximations, my preferred metric is the Weighted Absolute Relative Deviation

(WARD) of the value function:

WARD(V approx) =
∑
ω∈Ω

Pr pm94(ω)

∣∣∣∣V approx(ω)− V pm94(ω)

V pm94(ω)

∣∣∣∣ (22)

where Prpm94(ω) is the asymptotic probability of state ω computed using the full solution

value function V pm94. In Appendix A.4, I present the same results using the Mean Absolute

Relative Distance and the Weighted Squared Relative Distance. The results are very similar.

In Figure 1, I plot the average weighted absolute relative deviation of the value function

for different numbers of firms N , for the different algorithms, over 30 iterations. In Appendix

A.3 I report all the main figures with the standard deviation for each algorithm.
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Figure 1: Value function approximation accuracy

For what concerns approximation performance, the simulations results show two clear

winners: games with random order (c20 ) and experience-based equilibrium (pm01 ). They

are the only two methods that beat the baseline method (base) in terms of value function

approximation accuracy. A close runner up is the oblivious equilibrium (bvw08 ).

However, a more relevant metric is how well an algorithm approximates the policy func-

tions. In fact, whether we are interested in the computational model per-se or whether we

use it as an input into structural estimation, the ultimate object of interest is firm equilibrium

behavior. In Figures 2 and 3, I plot the relative approximation performance (measured using

the Weighted Absolute Relative Deviation) of the investment and exit policy functions for the

algorithms considered.

Figure 2: Investment Policy function approximation accuracy
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Figure 3: Exit Policy function approximation accuracy

Both figures show that games with random order (c20 ) outperforms competing algorithms

with experience-base equilibrium (pm01 ) and oblivious equilibrium (bvw08 ) coming next but

not close. Moreover, the gap between games with random order (c20 ) and all other methods

seems to be widening with the dimension of the state space.

It is important to note that all the other methods except for games in continuous time

(dj12 ) and games with random moves (dj19 ) can be tweaked in order to obtain a better

performance at the cost of a slower algorithm. However, as we can see from the next graph,

given the current parametrization, none of them is sensibly faster than c20, base or bvw08.

In Figure 4, I plot the base 10 logarithm of the relative computational time performance

with respect to the full solution method over the number of firms N for the different algorithms.

We can interpret the vertical axis as orders of magnitude gains in computational time.

Figure 4: Relative time performance.
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For what concerns computational time, the winner in this domain is the baseline approx-

imation (base) followed by the oblivious equilibrium (bvw08 ). These two methods outperform

all the others by orders of magnitude. Among the rest, experience-based equilibrium (pm01 ),

games in continuous time (dj12 ), games with random moves (dj19 ) and games with random

order (c20 ) all have a very similar performance in terms of speed. In Appendix A.3, I report

the decomposition of computational time into time per iteration and number of iterations for

all algorithms.

Overall, the simulation results highlight the fact that the choice of the approximation

algorithm involves a speed/accuracy trade-off. However, they also show that some methods

dominate others across all dimensions. More generally, alternative equilibrium formulations

outperform sampling-based methods.

5 Conclusion

Simulation results show that the new approximation method proposed in this paper, games

with random order, outperforms other algorithms in terms of approximation accuracy, while

still being very efficient in terms of computational time. For what concerns computational time,

the faster algorithm is the oblivious equilibrium of Weintraub et al. (2008). Methods that rely

on sampling are generally outperformed and dominated by alternative equilibrium concepts.

However, since sampling methods are sensible to the algorithm parametrization, it is hard to

draw more general conclusions.
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A Appendix

A.1 Summary Statistics

In this section I report summary statistics of the different equilibria analyzed in Section 4. I

report the following metrics: average number of firms, average firm state in the quality ladder

(conditional on being active), average profits, average investment and average exit probability.

N Active Firms State Profits Investment Exit Pr.

3 2.9983 2.8549 2.6267 1.0117 0.9997

4 3.6803 2.6476 2.2088 0.8641 0.9635

5 4.2681 2.4906 1.9469 0.7678 0.9323

6 4.8247 2.3551 1.7432 0.6921 0.9065

7 5.3689 2.2373 1.5745 0.6292 0.8855

8 5.9073 2.1349 1.4334 0.5757 0.8682

9 6.4297 2.0463 1.3162 0.5303 0.8526

Table 2: Summary Statistics

From Table 2 we observe that as the number of firms increases, there are more firms active

but each of them makes less profits, invests less and exits less frequently

A.2 Standard Deviations

In this section, I repeat the main exercise but reporting standard deviations. The area around

each line indicates one standard deviation.

(1) Value function (2) Exit Policy

Figure 5: Value function and time performance

From Figure 5 we observe that the variation in computational time for most algorithms

is imperceptible, confirming the robustness of the results. Only fsw12 shows considerable

variation in computational time. On the other hand, the approximation accuracy of sampling
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methods, kw94 and fsw12, is extremely volatile. The average values mask a high sensibility to

the sampling variation.

(1) Investment Policy (2) Exit Policy

Figure 6: Policy functions approximation accuracy

Figure 6 confirms that sampling methods are very volatile.

A.3 Computational Time Decomposition

In this section, I decompose the computational time into number of iterations and time per

iteration. The results are computed over 30 iterations.

(1) Number of Iterations (2) Time per Iteration

A.4 Performance Metrics

In this section, I consider other performance metrics in order to assess the accuracy of the

algorithms. In Section 4 I used the Weighted Absolute Relative Deviation (WARD). Here I

report results for two other metrics:

1. Mean Absolute Relative Deviation

MARD(V approx) =
1

|Ω|
∑
ω∈Ω

(ω)

∣∣∣∣V approx(ω)− V pm94(ω)

V pm94(ω)

∣∣∣∣
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2. Weighted Squared Relative Deviation

WSRD(V approx) =
∑
ω∈Ω

Pr(ω)

(
V approx(ω)− V pm94(ω)

V pm94(ω)

)2

In the next figure, I repeat the same exercise of Figure 1 but for the MARD and WSRD

metrics instead of WARD.

(1) Mean Absolute Relative Deviation (2) Weighted Squared Relative Deviation

From the two figures we observe that the results of Figure 1 are robust to the choice of the

distance metric.

A.5 Results for M

In this section I repeat the analysis of Section 4 but for M , the number of states in the quality

ladder, instead of N , the number of firms. First, I plot the value function and time performance

in Figure 9

(1) Value function (2) Exit Policy

Figure 9: Value function and time performance

From Figure 9, we see a clear distinction between two sets of approximation methods.

dj12, dj19 and fsw12 perform significantly worse than the rest. On the other hand, c20 and

bvw08 perform best for different values of M . In Figure 10, I report the approximation results

for the policy functions.
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(1) Investment Policy (2) Exit Policy

Figure 10: Policy functions approximation accuracy
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