
Algorithmic Collusion Detection∗

Matteo Courthoud†

September 16, 2021

Abstract

Recent studies on algorithmic pricing have shown that algorithms can learn sophisti-

cated grim-trigger strategies with the intent of sustaining supracompetitive prices. This

paper focuses on algorithmic collusion detection. One frequent suggestion is to look at the

inputs of the strategies, for example on whether the algorithm conditions its own pricing

strategy on past competitors’ prices. I first show that this approach might not be sufficient

since algorithms can learn reward-punishment schemes that are fully independent from the

rival’s actions. The mechanism that ensures stability of supra-competitive prices in this

environment is self-punishment. In the second part of the paper, I explore a novel test of

algorithmic collusion that builds on the intuition that a crucial ingredient for algorithmic

collusion is synchronous learning. When one algorithm is unilaterally retrained, it learns

new strategies that exploit collusive behavior. Since this change in strategies happens

only when algorithms are colluding, retraining can be used as a test to detect algorithmic

collusion. Lastly, I show how one can get the same insights on collusive behavior using

only observational data from a single algorithm, making the implementation of the test

feasible and low-cost.

Keywords: Artificial Intelligence, Collusion, Antitrust

JEL Classification: D21, D43, D83, L12, L13

∗Preliminary, latest version here.
†University of Zürich, email: matteo.courthoud@econ.uzh.ch.

1

https://matteocourthoud.github.io/files/Algorithmic_Collusion_Detection.pdf
mailto:matteo.courthoud@econ.uzh.ch

1 Introduction

Algorithms are slowly substituting human decision making in many business environments.

While some applications such as playing games (Silver et al., 2016) or driving cars have attracted

most of the attention of the press, algorithms are also more and more frequently used to make

pricing decision. Since these algorithms need experience in the form of data to be trained, their

applications mostly reside in high-frequency markets, such as gasoline markets (Assad et al.,

2020), Amazon marketplace (Chen et al., 2016) or financial markets.

A recent strand of literature has highlighted the ability of these algorithms to learn complex

dynamic collusive strategies, in the form of reward-punishment schemes. In particular, Calvano

et al. (2020b) found that reinforcement learning algorithms are able to learn complex reward-

punishment schemes with the intent of keeping supracompetitive prices. Their seminal paper

focuses on reinforcement learning algorithms deployed in a controlled, simulated environment

where algorithms compete in prices, facing a static demand function. Algorithms observe

their own and their competitors’ past prices and, based on the experience accumulated at that

point in time, they set prices simultaneously. They authors show that the algorithms are able to

learn collusive strategies autonomously, without any human intervention nudging them towards

collusion.

Policymakers are currently discussing what can be done either to prevent these collusive

behaviors or to detect and punish them. Ezrachi and Stucke (2017) and Ezrachi and Stucke

(2019) suggest to create testing hubs for algorithms in order to classify them into potentially

collusive and competitive. Another ex-ante solution, proposed by Harrington (2018), is to

look at the algorithms’ inputs and ban algorithms that are provided information that would

allow them to collude, such as observational actions of their rivals. In contrast to this ex-ante

solution, Calvano et al. (2020a) propose an interim approach: computer scientists should make

algorithms more interpretable, so that humans could observe their behavior in real time and

identify the rationales behind their decision making. Another potential approach is to intervene

ex-post and sanction algorithms based on their observed behavior.

The first contribution of this paper is to show that, by solely inspecting the inputs of the

algorithm, it is hard to draw conclusions on whether the algorithms are colluding. Even in a

controlled setting, such as the one in Calvano et al. (2020b), it might not be obvious which

inputs are necessary to define the collusive potential of an algorithm. While Harrington (2018)

argues that in this simple setting it would be sufficient to forbid algorithms to observe competi-

tors’ previous actions to prevent collusion, I show that it is not enough. In particular, pricing

algorithms can learn reward-punishment schemes with the sole intent of keeping supracompet-

itive prices using strategies that are fully independent from competitors’ actions. In the same

setting of Calvano et al. (2020b), I allow algorithms to base their strategies only on their own

past prices. Even with this restriction on the algorithms inputs, algorithms are able learn to

punish themselves for deviating from collusive prices and are hence able to obtain supracom-

petitive profits and sustain them in the long run. While being an extreme case, this exercise

underlines the fact that even full independence of algorithms’ strategies with respect to their

2

opponents’ past actions does not prevent the emergence of tacit collusive schemes. Categorizing

algorithms into potentially-collusive and potentially-competitive based on their inputs is not

trivial, even in the most controlled environment.

Given that detecting collusion from the inspection of the algorithms’ strategies might not be

feasible, in the second part of this paper I propose a model-free method to detect algorithmic

collusive behavior. My approach is based on the insight that if an algorithm is sufficiently

sophisticated to learn reward-punishment schemes with the intent of keeping supra-competitive

prices, it should also be able to learn to exploit such schemes. I show that keeping fixed the

strategies of its competitors, one algorithm is able to unilaterally exploit the collusive strategy

of its opponent, if it is not competitive. It is important to underline that the new strategy is not

a simple one-shot price undercut but, since reinforcement learning allows algorithms to build

history-dependent strategies, the deviation is more complex. Importantly for the possibility

of this insight to be used for a test of collusive behavior, when the algorithms are behaving

competitively, they are not able to learn more profitable strategies through retraining.

The main drawback of this method is that it is infeasible in practice: requiring firms to

retrain their algorithms is too expensive. Moreover, the test would require other algorithms to

not modify their behavior while the test is being performed, effectively requiring control over

all algorithms active in the market. Because of this major drawback, the last part of this paper

studies how to get the same insight using only the algorithms themselves and observational data.

This test does not require any manipulation of market outcomes, but only requires observational

data from a single firm. Indeed, this method can be applied unilaterally to each algorithm,

without requiring the aggregation of data from multiple firms, nor the control of multiple

algorithms simultaneously. The intuition behind the test is the following: the most recent

sequences of payoffs and state transitions are representative of future interactions. Therefore,

one can re-train one algorithm on its most recent observed data to mimic the current behavior

of its competitors. In case the algorithms are colluding, I show that the retrained algorithm

is able to learn to exploit the collusive behavior of its competitors. On the other hand, when

algorithms are playing competitive strategies, re-training does not lead to significant changes in

strategies. To the best of my knowledge, this constitutes the first attempt to build a model-free

test for algorithmic collusion, using only observational data.

The paper is structured as follows. Section 2 contains a review of artificial intelligence

algorithms in decision making. In particular, I cover recent advancements in computer science,

with a focus on Q-learning algorithms and the specific formulation used in the simulations.

In Section 3, I explore the extreme scenario in which a Q-learning pricing algorithms do not

observe their competitor’s price but still manage to adopt a reward-punishment schemes with

the intent to keep supra-competitive prices. This exercise serves as a warning for policies aimed

at defining collusive algorithms solely based on their inputs. Section 4 focuses on collusion

detection. I first show how unilaterally retraining one algorithm leads to profitable deviations

in case the algorithms were colluding. Then, I show how one can obtain the same insight using

only observational data. Section 5 concludes.

3

2 Q-Learning

Reinforcement learning algorithms are a class of learning algorithms that try to solve optimiza-

tion problems where rewards are delayed over multiple time periods. Moreover, these rewards

depend on the sequence of actions that the algorithm has to take over different time periods.

These two characteristics make reinforcement learning fundamentally different from standard

supervised learning problems. The algorithm objective is not simply to learn a reward function

but also to take an optimal sequence of actions. The most important feature of reinforcement

learning is indeed the dual role of the algorithm: prediction and optimization.

Q-learning is a popular reinforcement learning algorithm and constitutes the baseline model

for the most successful advancements in Artificial Intelligence in the last decade (Igami, 2020).

The most popular algorithms such as Bonanza or AlphaGo are based on the same principle,

while using deep neural networks to provide a more flexible functional approximation of the

policy function (Sutton and Barto, 2018).

One advantage of Q-learning algorithms is their interpretability, especially for what con-

cerns the mapping from the algorithm to the policy and value functions. The policy function

has a matrix representation that can be directly observed and interpreted. This makes it possi-

ble to understand not only the logic behind any decision of the algorithm at any point in time,

but also to know what the algorithm would have done in any counterfactual scenario.

In this section, I first explore the general formulation of Q-learning algorithms. Since these

algorithms have been developed to work in single-agent environments, I comment on their use

in repeated games. Lastly, I analyze the baseline algorithm used in the simulations throughout

the paper.

2.1 Single Agent Learning

Reinforcement learning algorithms try to solve complex dynamic optimization problems by

adopting a model-free approach. This means that the algorithm is not provided any structure

regarding the relationship between the state it observes, its own actions, and the payoffs it

receives. The algorithm only learns through experience, associating states and actions with the

payoffs they generate. Actions that bring higher payoffs in a state are preferred to actions that

bring lower payoffs. Since the state can include past states or actions, reinforcement learning

algorithms can learn complex dynamic strategies. The more complex the state and action space

of the learning algorithm, the more complex the strategies it can learn.

The objective function of the learning algorithm is the expected discounted value of future

payoffs

E

[
∞∑
t=0

δtπt

]
. (1)

In many domains faced by computer scientists, payoffs have to be hard-coded together with

4

the algorithm. For example, with self-driving cars, one has to establish what is the payoff of

an accident, or the payoff of arriving late. Clearly, the decision of these payoffs directly affects

the behavior of the algorithm. However, in some cases, the payoffs are directly provided by the

environment. For example, in the setting analyzed in this paper, the algorithm sets prices and

observes the profits coming from the sales of an item.

The main trade-off faced by reinforcement learning algorithms is the so-called exploration-

exploitation trade-off. Since the algorithm is not provided with any model of the world, it

only learns through experience. In order to learn different policies, the algorithm explores the

action space by taking sub-optimal actions. However, since the objective of the algorithm is

to maximize the expected discounted sum of future payoffs, at a certain point, the algorithm

needs to shift from exploration to exploitation, i.e., it needs to start taking optimal actions,

given the experience accumulated so far.

In each period, the algorithm observes the current state of the world, s and takes an action

a with the intent to maximize its objective function. I refer to the total discounted stream of

future payoffs under optimal actions as the value function. I can express the value function of

algorithm i in state s recursively as

Vi(s) = max
ai∈A

{
πi(s,a) + δEs′ [Vi(s

′)|s,a]
}
. (2)

Q-learning algorithms are based on a different representation of the value function, the

action-specific value function, which is called the Q function. I can write the action-specific

value function of algorithm i in state s when it takes action ai as

Qi(s, ai) = π(s,a) + δEs′

[
max
a′i∈A

Qi(s
′, a′i)

∣∣∣s,a] . (3)

When the state space S and the action space A are finite, we can express the Q function

as a |S|× |A| matrix. Many of the advancements in reinforcement learning involve a functional

representation of the Q function that can encompass more complex state or action spaces. The

most successful function approximations involve deep neural networks.

The objective of the algorithm is to learn the Q function. Once the algorithm has learned

the Q function, in each period it will take the optimal action a∗i = arg maxav∈AQ(s, ai). Learn-

ing and taking the optimal actions are the two main tasks of the algorithm, and the choice

between the two behaviors constitutes the main trade-off of reinforcement learning: exploration

versus exploitation.

Exploitation. Since the final objective of the algorithm is to maximize the expected dis-

counted sum of payoffs, in the exploitation phase, the algorithm picks the best available action,

given the experience accumulated so far. After a sufficient amount of exploration, in a sta-

tionary environment, the algorithm expected discounted sum of future payoffs is guaranteed

to converge to a local optimum of the value function (Beggs, 2005). Exploration is needed in

order to discover other better locally optimal policies.

Exploration. During the exploration phase, the objective of the algorithm is to explore

5

the state-action space in order to discover new policies. Since exploration involves testing sub-

optimal actions, there is a trade-off between exploration and exploitation. More exploration

implies lower short-term profits but can lead to the discovery of policies than bring higher

long-term profits. Moreover, when reinforcement learning algorithms are deployed in a dy-

namic environment, exploration gives the algorithm the flexibility to adapt to changes in the

environment.

There exists may different ways in which one algorithm can explore the state-action space

and the simplest one is the ε-greedy model. In each period, the algorithm decides to explore

with probability ε and to exploit with probability (ε). In the exploration phase, the algorithm

chooses one action uniformly at random.

Optimality Results. In a Markov single agent environment, under mild conditions, it has

been proven that a reinforcement learning algorithm learns locally optimal strategies, given

that the exploration rate ε converges to zero as time goes to infinity (Sutton and Barto, 2018).

Learning Speed. Since learning is a noisy process, the Q matrix is only partially updated.

In particular, given an action a∗i , irrespectively of whether the action comes from exploration

or exploitation, the update policy is

Qi(s, a
∗
i) = αQOLD

i (s, a∗i) + (1− α)QNEW
i (s, a∗i) (4)

where we refer to α as the learning rate. A higher α implies a faster but noisier learning.

The policy function takes less time to converge but it is less likely to adopt better strategies.

2.2 Repeated Games

In the setting of this paper, multiple Q-learning algorithms play a repeated game in which

they set per-period prices with the objective to maximize the expected discounted sum of

profits. Most of the reinforcement learning literature in computer science focuses stationary

environments. One common example is video games, where algorithms receive the video feed

as an input and have to pick the optimal actions in order to perform best in the game. Another

common area of research in reinforcement learning is robotics, from logistics to self-driving cars.

All these examples involve mostly stationary environments.

The behavior of reinforcement learning algorithms competing with each other in a repeated

game is still under research and there exist no general result concerning their behavior. In

particular, there is no result on whether algorithmic behavior will converge on collaborative

behavior, depending on the context.

3 Blind Learning

Differently from humans, algorithms have strategies that are hard-coded and hence directly

observable. I cannot observe whether humans decide to increase prices because of higher de-

6

mand, higher input prices, or an agreement with competitors. This is indeed the reason why

collusion per-se is not prohibited by law which, on the other hand, targets communication with

the intent to collude. However, we can observe the decision-making process of the algorithm.

Therefore, one might wonder whether it is possible to detect collusion by the inspection of the

algorithms’ strategies.

The main problem of detecting collusion from the inspection of algorithms’ strategies

comes from the fact that these strategies might be extremely complex and hard to understand

for a human. In practice, most reinforcement learning algorithms do not rely on a matrix

representation of the Q function but approximate it through deep neural networks which are

known to be extremely difficult to interpret.

One approach that has been proposed by Harrington (2018) is to look at the inputs of the

algorithm strategies. In particular, commenting on Calvano et al. (2020b), he suggests that

one possible metric to flag collusive algorithms is to look at whether the algorithm prices are

conditional on rivals’ past prices.

“In this simple setting, a pricing algorithm would be prohibited if it conditioned price

on a rival firm’s past prices. AAs [Artificial Agents] would be allowed to set any price,

low or high, but just not use pricing algorithms that could reward or punish a rival

firm based on that firm’s past prices.”

And he adds

“I am not suggesting that, in practice, a pricing algorithm should be prohibited if

it conditions on rival firms’ past prices. However, within the confines of this simple

setting, that would be the proper definition of the set of prohibited pricing algorithms.”

In this section, I am going to show that looking at the inputs of the algorithm strategies

might not be sufficient to detect algorithmic collusion. In particular, I show that an algorithm

whose strategy is based only on its own past action can still learn a reward-punishment scheme

with the sole intent of keeping supra-competitive prices.

3.1 Model

I adopt the baseline model from Calvano et al. (2020b). First of all, this choice allows a direct

comparison with their simulation results. Moreover, their setting is particularly simple and

easy to interpret. Lastly, since many competition policy and law papers are based on their

results, I can directly speak to that literature using the same exact model and parametrization.

Time is discrete and the horizon is infinite. At each point in time, n firms are active and

compete in prices with differentiated products. Differently from Calvano et al. (2020b), the

state of the game for each firm is its own history of pricing decisions up to k times periods in

the past. I discretize the possible actions on a grid of dimension m: {p1, ..., pm}. Therefore, the

subjective state of firm n is represented by a vector si,t = {pi,t−1, ..., pi,t−k} ∈ S = {p1, ..., pm}k,

7

where si,t represents the subjective state of firm i at time t. I will refer to s as a subjective

state and S as the subjective state space. Firms maximize their total future discounted profits.

The discount factor is δ ∈ [0, 1).

Demand. There is a continuum of consumers of unit mass. Consumer j’s utility from

buying one unit of product i is given by

uj,i = vj − µpi + εj (5)

where vj is the value of the product i for consumer j, pi is the price of product i, µ is the

price elasticity and εj is the idiosyncratic shock preference of consumer j for product i. The

random shocks εj are assumed to be independent and type 1 extreme value distributed so that

the resulting demand function has the logit form. For example, the demand of product i is:

qi(p) =
e−µpi

e−µpi +
∑
−i e

−µp−i
. (6)

The static game has a unique Nash Equilibrium which we refer to as the competitive

outcome.

Exploration/Exploitation. I use a ε-greedy exploration method as in Calvano et al. (2020b).

In each period, each algorithm has a probability εt of exploring and a probability 1 − εt of

exploiting. I refer to ε as the exploration rate. The value of εt in period t is given by

εt = 1− e−βt (7)

where β is the convergence parameter that governs how quickly the algorithms shift from

exploration to exploitation. As shown in Calvano et al. (2020b), the probability of collusion is

generally increasing in β. The more the algorithms are allowed to explore, the more likely it

is that they “stumble upon” a reward-punishment scheme. Once they discover these schemes,

they are likely to adopt them since they are more profitable than playing Nash Equilibrium in

the long run.

Q Matrix. Each algorithm policy function is defined by a Q-matrix. The Q-matrix has

dimension mk×m where the first dimension indicates the state space, i.e., the sequence of own

past actions, and the second dimension indicates the current action. I initialize the Q matrix

to the sum of discounted value of future profits, given action ai, and averaging over the possible

actions of the opponents. Therefore, the initial values do not depend on the state s, but only

on the action a:

Q0
i (s, ai) =

1

|A|
∑

a−i∈An−1

πi(ai,a−i)

1− δ
(8)

Policy Update. Irrespectively of whether an algorithm is exploring or exploiting, the Q

matrix is updated by averaging it’s new value with the previous one, according to a parameter

α, the learning rate. In particular, the updating formula is the following:

Qi(s, a
∗
i) = αQi(s, a

∗
i) + (1− α)

[
π(s, a∗i) + δmax

a′i

Qi(s
′, a′i)

]
. (9)

8

The new value of Q is state s for action a∗i is an average of the old value, Qi(s, a
∗
i), and

the new one. The new value is given by the static payoff of action a∗i in state s, plus the

discounted value of the best action the next state, s′. There are different ways to update the

continuation value of the Q-function (Sutton and Barto, 2018). In this setting, I select the

optimistic updating given by the max operator to be consistent with the choice of Calvano

et al. (2020b). Other possible solutions are weighted averages, where the softmax is a popular

weighting function.

Algorithm. I summarize the full algorithm in Figure 1

Algorithm 1: Q-learning

initialize Q0
i (s, ai) ∀i = 1...n, s ∈ S, ai ∈ A ;

initialize s0 ;

while convergence condition not met do

for i = 1...n do

explorationi = I
(
ri < e−βt

)
where ri ∼ U(0, 1) ;

if explorationi then

a∗i = a ∈ A chosen uniformly at random ;

else

a∗i = arg maxai Qi(s, ai) ;

end

end

observe π given (s, a∗) ;

observe s′ given (s, a∗) ;

Qi(s, a
∗
i) =

αQi(s, a
∗
i) + (1− α)

[
π(s, a∗) + δmaxa′i Qi(s

′, a′i)
]
∀i ;

s = s′ ;

end

Parametrization. I summarize the parameters of the baseline model in Table 1. The

parametrization closely follows Calvano et al. (2020b) so that the simulation results are directly

comparable with theirs.

9

Parameter Description Parameter Value

Learning rate α 0.15

Exploration rate β 4 · 10−6

Discount factor δ 0.95

Marginal cost c 1

Number of past observed states k 1

Dimension of the action grid m 5

Number of firms n 2

Convergence parameter T U [0, 1]

Price elasticity µ 0.05

Table 1: Model parametrization

3.2 Convergence

There is no guarantee of convergence for the learning algorithm. Algorithms react to each

others’ policies and therefore it is possible that they get stuck in a loop. Moreover, as long

as there is a non-zero probability of exploration, there is always a chance that one algorithm

suddenly adopts a totally different policy.

I use the same convergence criterion of Calvano et al. (2020b): convergence in actions. The

algorithm stops if for T periods the index of the highest value of the Q matrix in each state has

not changed i.e. arg maxai Qi,t(st, ai) = arg maxai Qi,t+τ (st+τ , ai) ∀i, s, τ = 1...T . In practice, I

choose a value of T = 105.

The advantage of this convergence criterion is that it does not require the algorithms to

adopt a full exploitative strategy in order to converge. Algorithms’ actions can stabilize even

if the algorithms regularly take random actions, but with low probability. In fact, as long as

the learning-rate α is lower than 1, firms only partially update their Q function. In practice,

we observe convergence around 500, 000 to 1, 500, 000 iterations, i.e. when the exploration

probability ε is around e−5 to e−10.

It is important to remark that one can achieve convergence in a shorter amount of periods.

What is crucial to achieve convergence is a sufficiently little exploration rate. However, with

a lower exploration rate, the algorithms are less likely to discover reward-punishment collusive

strategies.

3.3 Results

In my first experiment, I take the same setting of Calvano et al. (2020b) and I change the state

space of the algorithms, so that they do not observe each others’ past prices and are therefore

not able to condition their actions on their rival’s actions. In Figure 1, I plot the distribution

of equilibrium prices and profits over 100 simulations. As we can see, the distribution is closer

10

to monopoly prices and profits than to the Nash Equilibrium values.

Figure 1: Distribution of equilibrium prices and profits of Algorithm 1 in the model with blind algorithms, with

higher competition than Calvano et al. (2020b), mu = 0.05, over 100 simulations. The vertical lines indicate

the static collusive values, the static Nash Equilibrium values and average equilibrium values.

These supra-competitive profits are achieved thanks to a reward-punishment scheme. Al-

gorithms set higher prices until they observe a deviation. Once they observe a deviation, a

punishment scheme starts and they earn lower profits for a couple of periods. Afterwards, they

go back to the supracompetitive prices.

In order to see the reward-punishment scheme, I take the equilibrium Q function and

manually manipulate the pricing action of one firm in one period and observe the reaction of

both firms in the following periods. In particular, I make Algorithm 1 take the static best

reply to Algorithm 2’s action in the previous period. Then, I let the two algorithms react to

this unilateral deviation in the following periods. In Figure 2, I report the average sequence of

prices of the two algorithms, over 100 simulations.

11

Figure 2: Equilibrium actions of Algorithm 1 and 2 in the model with blind algorithms, before and after

a unilateral deviation of Algorithm 1. Algorithm 1 is manually set to best-reply to the equilibrium policy of

Algorithm 2, in period 10 (Deviation). From period 11 onwards (Punishment), both algorithms act according to

their equilibrium policies. The horizontal lines indicate the static collusive prices, static Nash Equilibrium prices

and average equilibrium prices. Each time series has been standardized with respect to its average equilibrium

values. The non-standardized distribution of values is reported on the right. The vertical bars represent

interquartile ranges while the vertical lines represent minimum and maximum values, over 100 simulations.

As we can see, when Algorithm 1 deviates from the stable collusive play, it sets a lower

price. Since both algorithms observe only their own actions, Algorithm 2 does not deviate and

keeps its collusive price. However, Algorithm 1 reacts to its own deviation and, in the following

periods, it sets an even lower price before getting back to the stable collusive play.

To verify whether this was a reward-punishment scheme, we would need to observe that

the profits of Algorithm 1 have increased in the deviation period, while they have decreased in

the subsequent punishment periods. In Figure 3, I plot the profits of the two algorithms over

100 simulations.

12

Figure 3: Equilibrium profits of Algorithm 1 in the model with blind algorithms, before and after a unilateral

deviation of Algorithm 1. Algorithm 1 is manually set to best-reply to the equilibrium policy of Algorithm

2, in period 10 (Deviation). From period 11 onwards (Punishment), both algorithms act according to their

equilibrium policies. The horizontal lines indicate the static collusive profits, static Nash Equilibrium profits

and average equilibrium profits. Each time series has been standardized with respect to its average equilibrium

values. The non-standardized distribution of values is reported on the right. The vertical bars represent

interquartile ranges while the vertical lines represent minimum and maximum values, over 100 simulations.

Figure 3 confirms our hypothesis of collusive play: the deviating algorithm achieves higher

static profits in the deviation period, but it is punished in the following periods.

3.4 Discussion

In the previous section, we have seen how firms can learn to play reward-punishment schemes

with the intent to keep supra-competitive prices even when their strategy is independent from

the opponent action. Whether this behavior is collusive, it is subject to debate. Harrington

(2018) tackles the issue of defining collusion in the presence of algorithmic pricing and lays

down the following definition.

“Definition: Collusion is when firms use strategies that embody a re-

ward–punishment scheme which rewards a firm for abiding by the supracompetitive

outcome and punishes it for departing from it.”

According to this definition, the behavior we observed in the previous section, would be

defined as collusive. What is puzzling is the fact that the strategy of the firm is independent

of the opponent strategy and the punishment comes from the algorithm itself and not from its

competitor. I conclude this section by examining how the firm learns these strategies and why

they are stable.

First of all, how do the algorithms learn these reward-punishment schemes? As we have

already seen in Section 2, reinforcement learning algorithms can potentially learn any strategy

that is allowed by their state-action space. This means that their limits reside on what they

can observe (the state space) and what they can do (the action space). In this case, the

algorithms observe only their own past action, their own price in the previous period, and use

this information to set the current price. Therefore, they can learn any strategy in which the

13

current price depends on the last price. The more they explore the state-action space, the more

likely they are to learn strategies that bring higher payoffs.

Second, why are these strategies stable and why firms do not learn to undercut their

rivals? The fact that algorithms are bounded by their state-action space is both a constraint

and an opportunity. In fact, in the exploration phase, the algorithm can potentially learn any

strategy compatible with its state-action space. However, when the algorithm shifts towards

exploitation, the probability of exploring for multiple periods, decreases quickly. This means

that the algorithm tests its current strategy under against and shorter deviations, in terms of

how many sequential periods are explored. At a certain point, the algorithm will test its own

current strategy only against one-shot deviations.

Let us explore in detail the case in which Algorithm 1 explores the possibility of best-

replying to the static price of its rival. This happens with probability ε. I assume we are in

“exploitation-most” mode so that ε is small and hence ε2 ≈ 0.

1. Algorithm 1 best replies to the supracompetitive price of Algorithm 2 setting pBR1 (pC2)

2. It gets a higher static payoff

π1

(
pBR1

(
pC2
)
, pC2

)
> π1

(
pC1 , p

C
2

)
(10)

where pC1 and pC2 are the collusive prices of the two algorithms and pBR1

(
pC2
)

is the best

reply of Algorithm 1 to the collusive price of Algorithm 2.

3. Algorithm 1 updates its Q function according to Equation 9:

Q1

(
pC , pBR1

(
pC2
))

=αQ1

(
pC , pBR1

(
pC2
))

+ (11)

(1− α)

[
π1

(
pBR1

(
pC2
)
, pC2

)
+ δmax

p′1

Q1

(
pC1 , p

BR
1

(
pC2
)
, p′1

)]
(12)

where pC is the vector of collusive prices.

4. As we can see, the update depends of two terms: the static profits π1

(
pBR1

(
pC2
)
, pC2

)
and

the future value δmaxp′1 Q1

(
pC1 , p

BR
1

(
pC2
)
, p′1

)
. Even if static profits are bigger than cur-

rent profits, the future value is not. Why? Because of the punishment scheme. Algorithm

1 will choose p′1 = pP1 so that it will punish itself and, as a consequence, it will not see

pBR1

(
pC2
)

as a better strategy.

5. This would be different if Algorithm 1, in the next period would explore again and pick

pBR1

(
pC2
)

instead of pP1 . However, as we have said at the beginning, this is extremely

unlikely since we are in “exploitation-most” mode so that ε2 ≈ 0.

Third, how do algorithms converge to these strategies? My claim is that the crucial

ingredient so that algorithms simultaneously converge to collusive strategies is synchronous

14

learning. If the algorithms were learning asyncronously1, i.e., one algorithm is in “exploitation-

most” mode while the other is in “exploration-most” mode, we would not obtain the same

result. The algorithm in “exploration-most” mode would learn a new strategy to exploit the

collusive algorithm. I test this hypothesis in the next section.

4 Detecting Algorithmic Collusion

In the previous section, we have seen that detecting algorithmic collusion from the inspection of

the algorithm’s inputs might not be feasible. Even in a very simple setting, where inspection of

the algorithm’s inputs seems sufficient to determine whether they can learn reward-punishment

schemes with the intent to keep supracompetitive prices, simple rules might not be sufficient.

Algorithms learn to collude even when they cannot base they strategy on past rival’s actions.

One solution could be to detect collusion from observational data. Economists know signs

that could hint at collusive behavior such as coordinated prices. However, these methods

rely heavily on the underlying models of market interactions. In fact, one has to be able to

distinguish collusion from a wide variety of confounding factors such as demand, aggregate

shocks, input prices or simply noise.

In this section, I study a model-free method to detect algorithmic collusion. My method is

based on the observation that algorithms are not trained to learn Subgame Perfect Equilibrium

strategies. Therefore, there exists the possibility that equilibrium strategies can be exploited.

This should not happen if the algorithms were playing competitively.

In the rest of this Section, I will show that the strategies that algorithms learn when

colluding are exploitable by other qlearning algorithms. In practice, I show that re-training one

of the two collusive algorithms against the other (holding the collusive strategy of the second

fixed), leads to higher profits for the first one. Therefore, collusive strategies are not sub-game

perfect and this insight can be used as a test for collusion. I show this result both in the original

setting of Calvano et al. (2020b) and in the setting of Section 3. I also show that if instead the

algorithms were playing the static competitive prices, their strategies cannot be exploited.

4.1 Blind Collusive Algorithm Retraining

If q-learning algorithms are sophisticated enough to learn complex grim-trigger strategies, they

should also be able to learn to exploit another algorithm that is playing a collusive strategy, if

this strategy is not sub-game perfect. In this Section, I explore this possibility. In particular,

I explore what happens when one of the two algorithms is unilaterally re-trained.

First, I train the two algorithms as explained in Section 3: both algorithms only condition

their current price on their own past price. Once convergence is achieved, I manually restart

1Note that this definition of “synchronous learning” differs from the one of Asker et al. (2021), in which

algorithms learn payoffs also for actions they have not taken, thanks to economic modeling.

15

the timing t for one of the two algorithms. This means that, according to Equation 7, the

probability of exploration is reset to 1 and it will gradually shift towards 0 as t increases. The

algorithm will move from an “exploitation mode” mode to an “exploration most” mode. The Q

function of the other algorithm is kept fixed over time, at its pre-retraining equilibrium value.

I use the same criterion described in Section 3.2 to determine convergence.

In Figure 4, I plot the algorithm’s profits before and after re-training.

Figure 4: Equilibrium profits of Algorithm 1 in the model with blind algorithms, before and after retraining

of Algorithm 1. On the right-hand side, the distribution of difference is normalized so that the zero corresponds

with the equilibrium average. The values are normalized so that the zero corresponds with the equilibrium

average, i.e. the dotted blue horizontal line. The two continuous black horizontal lines indicate the static

collusive profits and the static Nash Equilibrium profits.

As we can see, retraining leads to a more profitable strategy for Algorithm 1. The algorithm

learns to exploit the collusive strategy of its opponent, earning higher profits.

4.2 Non-blind Collusive Algorithm Retraining

In this Section, I show that the same results on algorithm retraining apply to the original

framework of Calvano et al. (2020b), when the algorithms also observe the past actions of

their opponent. In this case, the algorithms can actively enforce punishment in case of rival’s

deviation. As a consequence, the best strategy in response to the collusive policy might not

be as simple as undercutting. In fact, the collusive policy includes a punishment action for

undercutting. I plot the profits of Algorithm 1 before and after retraining in Figure 5.

16

Figure 5: Equilibrium profits of Algorithm 1 in the model of Calvano et al. (2020b), before and after retraining

of Algorithm 1. On the right-hand side, the distribution of difference is normalized so that the zero corresponds

with the equilibrium average. The values are normalized so that the zero corresponds with the equilibrium

average, i.e. the dotted blue horizontal line. The two continuous black horizontal lines indicate the static

collusive profits and the static Nash Equilibrium profits.

Figure 5 confirms that the new policy of Algorithm 1 after retraining is indeed more

profitable than the collusive policy. The insight from this and the previous Figure is that

collusive strategies are open to exploitation from a new q-learning algorithm. In order to

understand whether this insight could be used as a test for algorithmic collusion, we need to

test it on a placebo case, in which the algorithms are not colluding.

4.3 Non Collusive Algorithm Retraining

Lastly, I am going to inspect what happens when one algorithm is unilaterally retrained in

case the algorithms were not colluding. I would expect that if the algorithms were playing

competitive strategies, one algorithm would not be able to learn any better strategy than the

competitive one. In Figure 6, I plot the profits before and after retraining of Algorithm 1, in

the scenario in which Algorithm2 is always playing the static Nash Equilibrium.

17

Figure 6: Equilibrium profits of Algorithm 1 in the model of Calvano et al. (2020b), where Algorithm 2 always

plays the static Nash Equilibrium, before and after retraining of Algorithm 1. On the right-hand side, the

distribution of difference is normalized so that the zero corresponds with the equilibrium average. The values

are normalized so that the zero corresponds with the equilibrium average, i.e. the dotted blue horizontal line.

The two continuous black horizontal lines indicate the static collusive profits and the static Nash Equilibrium

profits.

As we can see from Figure 6, Algorithm 1 keeps playing the competitive strategy even

after re-training. This intuitively makes sense, since by definition of static Nash Equilibrium,

Algorithm 2 cannot be unilaterally exploited.

4.4 Re-training on observational data

As we have seen in the previous paragraphs, asynchronous learning allows q-learning algorithms

to exploit their opponent strategies, in case they were colluding. However, the direct policy

implication of this finding - enforcing retraining of algorithms - is clearly unfeasible. One cannot

ask firms to reset their algorithms in order to check for collusion. Learning is not only time

consuming but also expensive for firms that have to undergo a sequence of suboptimal actions.

Moreover, this procedure requires that all other algorithms stop learning, i.e. it assumes control

over all algorithms active in the market.

In this Section, I show that one can obtain the same result using only observational data.

They key insight comes from the fact that algorithm exploration provides natural experiments to

understand their behavior in counterfactual scenarios. In fact, thanks to algorithm exploration,

algorithms generate counterfactual data on their behavior in alternative states. Given this

data, one could directly compute implied value and policy functions and examinate whether

the implied optimal behavior is different from the observed one.

To assemble this dataset, one needs the following ingredients: for each state-action pair

(s, ai), an estimate of payoffs π̂i(s, ai) and transition probabilities p̂r(s′|s, ai). With these

ingredients, I compute the implied value and policy function. Then, I deploy such policy

against the actual one to observe whether in indeed leads to different behavior and if this

18

behavior is indeed more profitable.

The choice of the periods to use to re-train the algorithm is important. The more recent an

observation is, the more likely it is to be representative of current opponent’s behavior. However,

one would also prefer to include in the bootstrap sample older observations to increase the

accuracy of the estimate. In other terms, the more time periods one includes in the estimation

of π̂i(s, ai) and ŝ′(s, ai), the more the variance of the estimates decreases, but the more the

bias of the estimates increases. In the simulation results reported below, for each state-action

pair (s, ai), I use the single most recent observed state-action period to build the estimates of

the payoffs and state transitions.

In Figure 7, I report the actions and profits of Algorithm 1 after retraining on the bootstrap

sample, when the algorithm sees only its own past action, as in Section 3.

Figure 7: Equilibrium profits of Algorithm 1 in the model with blind algorithms and high competition,

µ = 0.05, before and after retraining of Algorithm 1 on observational data. On the right-hand side, the

distribution of difference is normalized so that the zero corresponds with the equilibrium average. The values

are normalized so that the zero corresponds with the equilibrium average, i.e. the dotted blue horizontal line.

The two continuous black horizontal lines indicate the static collusive profits and the static Nash Equilibrium

profits.

From Figure 7, we observe that the algorithm consistently changes its strategy adopting

more competitive actions. The results are noisier than in the case of retraining, but this is

expected since observed actions are only partially predictive of future behavior. Also profits

seem to be consistently higher but the amount of noise is significant.

In Figure 8, I repeat the same exercise in the setting of Calvano et al. (2020b), when the

algorithms observe both their own past action and their competitor’s.

19

Figure 8: Equilibrium prices of Algorithm 1 in the model of Calvano et al. (2020b), before and after retraining

of Algorithm 1 on observational data. On the right-hand side, the distribution of difference is normalized so

that the zero corresponds with the equilibrium average. The values are normalized so that the zero corresponds

with the equilibrium average, i.e. the dotted blue horizontal line. The two continuous black horizontal lines

indicate the static collusive prices and the static Nash Equilibrium prices.

Again, Algorithm 1 consistently picks more competitive actions after retraining from the

bootstrap sample of observed data. In this case, the pattern is more stark, but profits are not

significantly higher, suggesting that the new algorithm is overfitting the bootstrapped data.

Lastly, in Figure 9, I repeat the same exercise in the case in which Algorithm 2 was

always playing the static Nash Equilibrium prices. As we have previously seen, algorithms

in equilibrium play competitive strategies, therefore we expect them not to find a profitable

deviation through retraining.

Figure 9: Equilibrium prices of Algorithm 1 when Algorithm 2 always plays the static Nash Equilibrium prices,

before and after retraining of Algorithm 1 on observational data. On the right-hand side, the distribution of

difference is normalized so that the zero corresponds with the equilibrium average. The values are normalized so

that the zero corresponds with the equilibrium average, i.e. the dotted blue horizontal line. The two continuous

black horizontal lines indicate the static collusive prices and the static Nash Equilibrium prices.

20

In this case, Algorithm 1 is not able to find a more profitable strategy.

5 Conclusion

In this paper, I have examined the issue of detecting algorithmic collusion. I have first shown

that the inspection of the algorithm’s inputs might not be sufficient in order to determine

whether an algorithm can learn collusive strategies. Using the algorithmic collusion setting

of Calvano et al. (2020b), I show that even if algorithms were not observing the competitor’s

actions, they are still able to learn reward-punishment schemes. While this is an extreme

scenario, it highlights the fact that independence from competitors’ actions is not sufficient

to prevent algorithms to learn reward-punishment strategies with the purpose to set supra-

competitive prices.

In the second part of the paper, I propose a model-free approach to detect algorithmic

collusion. To the best of my knowledge, this is the first attempt to build a model-free test for

algorithmic collusion, using only observational data. Building on the insight that algorithms

are sophisticated but not designed to learn Sub-game Perfect equilibriums trategies, I show that

unilaterally re-training one algorithm allows it to learn more profitable strategies. Remarkably,

this happens only if the algorithms were colluding. The same does not occur if the algorithms

were adopting competitive strategies.

Since retraining algorithms is expensive and difficult to enforce, I show that one can obtain

similar results relying only on observational data. In fact, a key feature of reinforcement learning

is that the algorithm keeps exploring new strategies in order to adapt to changes in a dynamic

environment. These exploration phases provide natural experiments to test ex-post for collusive

behavior.

References

John Asker, Chaim Fershtman, and Ariel Pakes. Artificial intelligence and pricing: The impact

of algorithm design. Technical report, National Bureau of Economic Research, 2021.

Stephanie Assad, Robert Clark, Daniel Ershov, and Lei Xu. Algorithmic pricing and competi-

tion: Empirical evidence from the german retail gasoline market. 2020.

Alan W Beggs. On the convergence of reinforcement learning. Journal of economic theory, 122

(1):1–36, 2005.

Emilio Calvano, Giacomo Calzolari, Vincenzo Denicolò, Joseph E Harrington, and Sergio Pas-

torello. Protecting consumers from collusive prices due to ai. Science, 370(6520):1040–1042,

2020a.

Emilio Calvano, Giacomo Calzolari, Vincenzo Denicolo, and Sergio Pastorello. Artificial in-

21

telligence, algorithmic pricing, and collusion. American Economic Review, 110(10):3267–97,

2020b.

Le Chen, Alan Mislove, and Christo Wilson. An empirical analysis of algorithmic pricing on

amazon marketplace. In Proceedings of the 25th International Conference on World Wide

Web, pages 1339–1349, 2016.

Ariel Ezrachi and Maurice E Stucke. Artificial intelligence & collusion: When computers inhibit

competition. U. Ill. L. Rev., page 1775, 2017.

Ariel Ezrachi and Maurice E Stucke. Sustainable and unchallenged algorithmic tacit collusion.

Nw. J. Tech. & Intell. Prop., 17:217, 2019.

Joseph E Harrington. Developing competition law for collusion by autonomous artificial agents.

Journal of Competition Law & Economics, 14(3):331–363, 2018.

Mitsuru Igami. Artificial intelligence as structural estimation: Deep blue, bonanza, and al-

phago. The Econometrics Journal, 23(3):S1–S24, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-

tot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529

(7587):484–489, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

22

	Introduction
	Q-Learning
	Single Agent Learning
	Repeated Games

	Blind Learning
	Model
	Convergence
	Results
	Discussion

	Detecting Algorithmic Collusion
	Blind Collusive Algorithm Retraining
	Non-blind Collusive Algorithm Retraining
	Non Collusive Algorithm Retraining
	Re-training on observational data

	Conclusion

